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The accurate prediction of the potential energy function of the X1Σg
+ state of Cr2 is a remarkable challenge;

large differential electron correlation effects, significant scalar relativistic contributions, the need for large
flexible basis sets containing g functions, the importance of semicore valence electron correlation, and its
multireference nature pose considerable obstacles. So far, the only reasonable successful approaches were
based on multireference perturbation theory (MRPT). Recently, there was some controversy in the literature
about the role of error compensation and systematic defects of various MRPT implementations that cannot
be easily overcome. A detailed basis set study of the potential energy function is presented, adopting a
variational method. The method of choice for this electron-rich target with up to 28 correlated electrons is
fully uncontracted multireference-averaged quadratic coupled cluster (MR-AQCC), which shares the flexibility
of the multireference configuration interaction (MRCI) approach and is, in addition, approximately size-
extensive (0.02 eV in error as compared to the MRCI value of 1.37 eV for two noninteracting chromium
atoms). The best estimate for De arrives at 1.48 eV and agrees well with the experimental data of 1.47 (
0.056 eV. At the estimated CBS limit, the equilibrium bond distance (1.685 Å) and vibrational frequency
(459 cm-1) are in agreement with experiment (1.679 Å, 481 cm-1). Large basis sets and reference configuration
spaces invariably result in huge wave function expansions (here, up to 2.8 billion configuration state functions),
and efficient parallel implementations of the method are crucial. Hence, relevant details on implementation
and general performance of the parallel program code are discussed as well.

1. Introduction

The chromium dimer is a notoriously difficult target for ab
initio methods in quantum chemistry, with a long history of
attempts to tackle the problem. Its X1Σg

+ ground state formally
contains a hextuple bond with six bonding orbitals (3dσ, 3dπ,
3dπ′, 3dδ, 3dδ′, 4sσ) derived from the 3d and 4s atomic orbitals.
The molecule dissociates into two chromium atoms in their high-
spin ground state (7S). The ground state of the chromium dimer
has been experimentally characterized by measurements of the
A r X transition.1 A vibrational frequency ωe of 452 cm-1

and a short bond length of 1.679 Å, agreeing with the high
formal bond order, have been assigned. In contrast, the
experimental binding energy2 of 1.44 ( 0.05 eV is even less
than the 2.078 eV determined for singly bonded Cu.3 For the
isovalent Mo2 analogue, relativistic effects stabilize the ground
state to 4.41 eV. The effective bond order4,5 (EBO), a simple
measure of the bond applicable to multiconfigurational wave
functions, indicates that the Mo2 EBO value6 of 5.2 comes much
closer to the limiting value of 6 than Cr2 with an EBO of 4.5,
both derived from complete active space peturbation theory
second order (CASPT2).7,8 An accurate experimental potential
energy function based on photoelectron spectrosopy on Cr2

-

sparked new interest in this molecule.9 The potential curve
shows an unusual shape with a broad “shelf” on the outer wall.
While the inner well is dominated by 3d-3d bonding, the broad
shelf corresponds to predominantly 4s-4s bonding with anti-
ferromagnetically coupled 3d electrons. A very shallow mini-

mum in the 4s-4s bonding region could not be confirmed
unambiguously on experimental grounds.9

The X1Σg
+ state of Cr2 is characterized by large differential

electron correlation effects. The description of bond polarization
at short distances requires at least f functions, and semicore
valence electron correlation must not be neglected. The accurate
calculation of the spectroscopic constants and the potential
energy function for Cr2 constitutes a prominent demanding
benchmark test case for electron correlation methods.

The multiconfigurational character and the near-degeneracies
of low-lying electronic states is characteristic for many open-
shell transition-metal compounds. Dynamical electron correla-
tion effects are as large as scalar relativistic corrections. Not
unexpectedly, single-reference electron correlation methods do
not perform well here; starting from a symmetry-broken
unrestricted Hartree-Fock wave function, unrestricted coupled
cluster singles and doubles with perturbative triples correction
predicted a dissociation energy of 0.89 eV and a bond distance
of 2.54 Å.10 Density functional theory calculations10-20 have
not been particularly successful either, owing to the large spread
of the results depending upon the specific functional used.
Spurious spin contamination adds to the uncertainties of
unrestricted treatments.

Multireference methods face computational difficulties arising
from the large reference configuration space; even the smallest
possible complete active space (CAS) with 12 electrons in the
12 valence orbitals, which dissociates correctly, consists of
28784 configurations in D2h symmetry, and extension by four
4p-derived orbitals gives already rise to ∼1.8 million configura-
tions. At the complete active space self-consistent field (CASS-
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CF)21 level of theory, the ground state is very weakly bound in
the 4s-4s bonding region using a CAS(12,12),22 while adding
a subset of four 4p-derived orbitals into the active space to yield
CAS(12,16) causes this minimum becomes more pronounced.23

Thus, in order to account for dynamic electron correlation,
computationally less demanding MRPT methods were the
preferred tool to investigate this molecule, despite restrictions
on the size of the active space. Early applications disagreed
with the experimental data. Finally, CASPT2 calculations23

conducted with large basis sets including g functions, semicore
3s and 3p electron correlation, and scalar relativistic effects in
all-electron calculations led to satisfactory agreement with the
experimental data, and the problem was considered to be settled.

More recently, a detailed analysis of MRPT and MRCI results
obtained with basis sets including up to i functions,24 however,
revealed that MRPT methods give rise to a systematic error
that was traced back to an imbalanced treatment of core-valence
and valence-valence electron correlation. It was argued that
the excellent results obtained in ref 23 are due to fortituous
error compensation. This shortcoming is shared by several
implementations of MRPT second order, which are either free
(N-electron valence state perturbation theory (NEVPT2))25-28

or less plagued by intruder states (CIPT2, which treats valence
and core electron correlation at MRCI and PT2 levels, respec-
tively)24 than CASPT2, so that level-shift techniques29,30 (re-
quired to overcome the intruder state instabilities) cannot be
responsible for this defect. Close to the complete basis set (CBS)
limit, CASPT2 and NEVPT2 overbind by up to 0.4 eV, while
CIPT2 underestimates De by 0.3 eV. CASPT2-based re agrees
with the experimental bond length, while NEVPT2 is short by
0.02 Å, and CIPT2 exceeds by 0.08 Å. Perturbation theory third
order (NEVPT3) produces disappointing results,31 which is likely
due to the sensitivity to the choice of the zeroth-order ap-
proximation Ĥ0. It is well-known that perturbation theory second
order benefits from error compensation effects, and including
higher-order corrections magnifies shortcomings in Ĥ0 which
are otherwise not apparent at second order. While Celani et al.24

succeeded in obtaining satisfactory equilibrium bond length and
vibrational harmonic frequencies with internally contracted (IC)
MR-CI32 with and without a posteriori size-extensivity correc-
tions of Davidson type,33 De was underestimated by 0.5 and
0.7 eV even for extended basis sets. For an overview over
previous calculations, refer to Figure 5 and Table 2, respectively,
in the Results and Discussion section.

The purpose of this work is to resolve the apparent contradic-
tions with respect to MRPT approaches by accurately computing
the potential energy function of the X1Σg

+ state by a different
multireference method, under special consideration of the
bottlenecks identified by previous workers. The method of
choice is MR-AQCC,34,35 an approximately size-extensive
functional closely related to MRCI, which is expected to be
more adequate for this problem than MRCI with a posteriori
Davidson correction or MRPT. To eliminate the differential
internal contraction error, estimated to contribute as much as
0.09 eV to De for valence electron correlation,24 fully uncon-
tracted MR-AQCC is employed. Scalar relativistic effects are
taken into account by the Douglas-Kroll-Hess (DKH)
Hamiltonian36,37 as to avoid the uncertainties arising from atom-
optimized effective core potentials. This is complemented by a
study of basis set dependence and extrapolation to the CBS limit.

Uncontracted MR-AQCC calculations with large basis sets
invariably encounter huge CI expansions, and efficient parallel
implementations are of crucial importance. While the general
parallelization scheme based on a partitioning of the CI vector

into segments and computing the individual partial contributions
(tasks) independently in a single loop over all tasks is fairly
straightforward,38 load balancing issues become critical as the
optimum task definition depends on both machine- (e.g.,
bandwidth, memory per node, clock rate, number of nodes, etc.)
and model-specific parameters (basis set, point group symmetry,
configuration space). With the increasing availability of large-
scale supercomputer systems (nowadays, mostly large clusters
of multiway shared memory systems) with up to several
thousands of processors, it is yet not straightforward to make
use of the inherent computational power of these systems.
Hence, conceptual and performance issues relevant for large-
scale applications are also discussed.

2. Methodology

This section briefly describes aspects and modifications of
the MR-CISD method as implemented in the COLUMBUS
program system39-42 that are relevant to its usage on massive-
parallel computer systems for large-scale calculations. These
considerations also apply to the approximately size-extensive
methods MR-ACPF (averaged coupled pair functional),43 MR-
AQCC (averaged quadratic coupled cluster),34,35 LRT (linear
response theory)-MR-AQCC,44 and TE(total energy)-MR-
AQCC,45 which are closely related to MR-CISD.

The many-electron wave function is expanded in terms of
spin-adapted configuration state functions (CSFs) Φi. The full
CI space is partitioned into four disjoint subspaces P, Q′, Q,
and R. P denotes the reference configuration space, spanned by
a subset of all configurations that can be obtained by distributing
the electrons over the internal (active + inactive) orbitals, only.
Q′ denotes all single and double excitations out of Φi ∈ P not
contained in P with all external orbitals unoccupied (also termed
internal configurations), while Q contains those single and
double excitations not contained in either P or Q′. R finally
denotes all CSFs not contained in either P, Q, or Q′.

The full CI wave function reads

The uncontracted MR-CISD expansion is truncated to ΨP +
ΨQ′ + ΨQ, with all ci

P,ci
Q′,ci

Q optimized independently. As the
truncated MR-CISD expansion is not size-extensive, a rapidly
increasing differential electron correlation error is introduced
beyond about 10 correlated electrons. Approximately, size-
extensivity corrected methods restore size-extensivity by incor-
porating the effect of higher excitations from the R space in an
approximate way. MR-AQCC includes the effect of discon-
nected quadruple excitations and may be considered as an
approximation to MR-CCSD. As a variational method with
respect to the wave function expansion coefficients, analytical
gradients can be implemented efficiently, exploiting the
Hellmann-Feynman theorem.46 Very accurate data for excita-
tion energies, equilibrium bond lengths, and harmonic frequen-
cies have been obtained at the CBS limit in a benchmark study.47

Thus, it is the method of choice for many-electron targets.
MR-CISD, MR-AQCC, and MR-ACPF can be expressed in

terms of optimizing the following functional of the correlation
energy with respect to the wave function expansion coefficients
ci
R of state R

ΨFCI ) ΨP + ΨQ′ + ΨQ + ΨR ) ∑
i∈P

ci
PΦi

P +

∑
i∈Q′

ci
Q′Φi

Q′ + ∑
i∈Q

ci
QΦi

Q + ∑
i∈R

ci
RΦi

R (1)
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where the constant G equals 1 for MRCISD, 2/ne for MRACPF,
and 1 - {[(ne - 3)(ne - 2)]/[ne(ne - 1)]} for MRAQCC, with
ne being the number of correlated electrons, only. The reference
energy E0

R of the reference wave function is independent of ci
R.

Equivalently, this method may be formulated in terms of an
eigenvalue problem with a diagonal shift of the Q space CSFs.

As ∆̂R depends on the state-specific correlation energy ∆ER )
E - E0

R, the equations have to be solved iteratively with ∆ER
approximated by the current correlation energy estimate. Most
conveniently, the subspace representation ∆̂R is added to the
subspace Hamiltonian. Densities are obtained through scaling
of the CI-like density CIΓR and reference density matrix elements
ΓP
R.

In contrast to state-specific energies and properties, transition
densities are not accessible. Linear response theory (LRT)
derives excited states perturbatively from the reference state,
usually the ground state. The LRT variant of MR-AQCC allows
for the consistent calculation of excitation energies and transition
densities at the expense of the LRT approximation. The formulas
resemble those above, substituting the state-specific correlation
energy ∆ER with the correlation energy of the reference state
and the density matrices with the corresponding transition
densities between the reference and excited-state R throughout.
MR-AQCC/MR-ACPF implicitly assume a qualitatively correct
reference wave function through E0

R, which enters ∆̂R, a
requirement that can rarely be met for strongly interacting
electronic states close to avoided crossings. The total energy
(TE) variant of MR-AQCC replaces FR(cR) by a functional of
the total energy, and E0

R is substituted by the relaxed reference
energy Ẽ0

R defined as

It follows that ∆̂ is amended by an off-diagonal term ∆̂̃ over
the reference space, only.

TE-AQCC is sensitive to the choice of the reference space, only,
similar to the multireference analogues of the SDCI type
Davidson correction46

where c0
2 ) ∑i∈P ci

RΦi
R denotes the relaxed weight of the reference

space in the final normalized MR-CISD wave function.
The size-extensivity correction for MR-AQCC and MR-ACPF

takes the form of a shift of the diagonal H matrix elements
belonging to the Q space. This may give rise to divergence of
the energy. Assume a model CSF space solely consisting of a
single Q and P configuration with the diagonal H matrix
elements HQ and HP. The eigenvalues of the modified H matrix
are to be computed self-consistently for ∆R and E

For the first cycle, ∆R is set to 0, and the lowest eigenvalue E
is given by

If |∆R| < 2δ, divergence of the energy cannot be avoided.
Divergence can occur whenever ∆R is not converging to a finite
asymptotic value. Expanding E up to third order in R around R
) 0 and reinserting it into the original eigenvalue problem shows
that the expression for ∆R remains unchanged in the subsequent
iterations, and convergence is guaranteed if the ratio of R/δ is
small enough for the fourth-order term of the Taylor expansion
to vanish. The general case is divergent whenever ∆R + Hi <
Hj ∀ i ∈ Q, j ∈ P,Q′, which again relies on the magnitude of
the off-diagonal H matrix elements coupling to the Q space
and the diagonal matrix element differences.

The evaluation of all functionals is based on the graphical
unitary group approach.48,49 Here, the wave function is specified

FR(cR) )

〈 ∑
i

ci
RΦi|Ĥ-E0

R| ∑
i

ci
RΦi〉

∑
i∈P,Q'

(ci
R)2 + G ∑

i∈Q

(ci
R)2

(2)

〈Φj|Ĥ-E0
R + ∆̂R| ∑

i

ci
RΦi〉 ) ∆ERcj

R (3)

∆̂R ) ∑
k∈Q

(1 - G)∆ER|Φk〉〈Φk| (4)

ΓR ) aCIΓR + (1 - a)ΓP
R (5)

a )
∑

i

(ci)
2

∑
i∈P,Q'

(ci)
2 + G ∑

i∈Q

(ci)
2

(6)

Ẽ0
R )

〈 ∑
i∈P

ci
RΦi

R|Ĥ| ∑
i∈P

ci
RΦi

R〉

∑
i∈P

(ci
R)2

g E0
R (7)

∆̃̂ ) ∑
l∈P

∑
k∈P (|Φl〉〈Φl|

(G - 1) ∑
i∈Q

(ci
R)2

∑
i∈P

(ci
R)2

(Ĥ-Ẽ0
R)|Φk〉〈Φk|)

(8)

ECI+Q1 ) ECI
R + (ECI

R - Ẽ0
R)(1 - c0

2) (9)

ECI+Q2 ) ECI
R + (ECI

R - Ẽ0
R)

1 - c0
2

c0
2

(10)

ECI+Q3 ) ECI
R + (ECI

R - Ẽ0
R)

1 - c0
2

2c0
2 - 1

(11)

(Hj + δ + ∆R R
R Hj - δ )

Hj ) 1
2

(HQ + HP)

δ ) 1
2

(HQ - HP) g 0

∆R ) (1 - G)(E - HP) e 0
(12)

E ) Hj - √R2 + δ2 (13)

) Hj - δ - 1
2δ

R2 + O(R4) (14)

∆R ) -1
2

(1 - G)
R2

δ
(15)
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in terms of DRTs (distinct row tables), which are tabular
representations of the distinct row graph with each CSF
represented as a directed walk from tail to head. In the second-
quantized form, the Hamiltonian can be written in terms of one-
(hij) and two-electron MO integrals ((ij|kl) ) 〈i(1)j(1)|(1/
r12)|k(2)l(2)〉) and the generators of the unitary group U(n) (Êij)

Evaluating the matrix element 〈Φm|Ĥ|Φn〉 of the CI matrix H
thus reduces to the computation of the respective coupling
coefficients 〈Φm|Êij|Φn〉, 〈Φm|ÊijiÊkl - δjkÊil|Φn〉, and their
contraction with the MO integrals. The GUGA formalism is
used to efficiently evaluate the CI matrix elements on the fly,
while the dimension of the CI vector retains the size of the
encoded CSF space. A recently developed variant of GUGA-
based CI50 goes a step further and incorporates a nonlinearly
contracted CI wave function expansion directly into the GUGA
formalism, so that the number of variational parameters is
several orders of magnitude smaller than the underlying encoded
CSF basis. While the memory consumption compared to the
traditional approach is negligible, the optimization of a huge
number of linear parameters is replaced by a corresponding
optimization of a much smaller set of nonlinear parameters.

3. Implementation
The orbital space is divided into nint internal orbitals (indices

i,j,k,l) occupied by at least one reference configuration and the
remaining next external orbitals (indices a,b,c,d) occupied by at
most two electrons. The CSF space is partitioned into configura-
tions containing no (Z), one (Y), two triplet (X), and two singlet
(W) coupled electrons in the external orbital space, respectively.
It is further segmented into continuously enumerated subsets,
such that CSFs sharing the same internal orbital occupation and
spin-coupling (denoted as internal walks) are collected into one
segment. The integrals are classified according to the number
of external orbital indices (0,1,2,3,4). The nonvanishing con-
tributions Ts,s′

I to the symmetric CI matrix are sketched in Figure
1. Each task type Ts,s′

I is characterized by integral class I and
the pair of segment types s,s′ (s,s′ ∈ Z,Y,X,W), while an
individual task Ts̃,s̃′

I carries the segment indices s̃,s̃′. For four-
external integrals, nonvanashing contributions arise only among
CSFs sharing the same internal walk and, hence, occur solely
within a single segment. With multiple segments per segment
type, an almost arbitrary number of independent tasks can be
generated and evaluated in any order. Spin-orbit CI introduces
additional zero-, one-, and two-external one-electron spin-orbit
integrals, and the associated terms are combined with the
corresponding nonrelativistic task types. One-electron integral
contributions not explicitly mentioned are combined with the
most appropriate two-electron terms.

Figure 1. Cost matrix for a CAS(12,12) with all inactive electrons frozen (D2h). The logarithmic gray scale of the patches encodes the relative
work load required to compute the respective subblock of the CI matrix. The resolution is 150 × 150 blocks per task type Tss′

I , corresponding to
192 Z, 2266 Y 1883 X, and 1132 W type encoded internal walks per block. For the EXTD basis with ∼35 orbitals per irrep, each block encodes
192 Z, 79 × 103 Y, 288 × 103 X, or 173 × 103 W configurations.

Ĥ ) ∑
ij

hijÊij +
1
2 ∑

ijkl

(ij|kl)(ÊijÊkl - δjkÊil) (16)
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The direct CI approach51 using the Davidson diagonalization52,53

replaces the explicit construction of the CI matrix by an
iteratively improved subspace representation of the problem. It
relies on the efficient formation of matrix vector products σ )
Hv (see Scheme 1). This procedure requires the storage of up
to the predefined maximum of nVmax vectors v and σ, which
constitute the basis of the subspace representation of H. The
evaluation of each partial contribution Ts̃,s̃′

I requires random
access to a pair of σs and vs′ segments and a single pass through
the integrals of class I. In order to minimize the bookkeeping
overhead associated with coupling coefficient evaluation, seg-
ment-specific DRTs encoding solely the CSF subspace of a
given segment are introduced. To further reduce overhead while
retaining low local memory consumption tasks Ts̃,s̃′

I and Ts̃′,s̃
I are

treated jointly at the expense of doubling the local memory
consumption if s̃′,s̃ contain at most a single unique X or W
type segment. The major quantities to be stored and accessed
are the 2nVmaxncsf elements of the subspace basis vectors (vi,σi)
and the two-electron integrals ∼nint

4-Inext
I /8. Subspace basis vectors

and three- and four-external integrals contribute most to the
storage requirements. Upon convergence of the energy, the one-
and two-electron density matrices are evaluated using essentially
the same machinery, with integrals replaced by density matrix
elements at the expense of a single CI iteration.

In serial operation, the entire trial and σ vector are kept in
memory while the integrals and subspace basis vectors are kept
on disk with total storage requirements of 16ncsf bytes of
memory and 16ncsfnVmax + (next + nint)4 bytes of disk space. The
I/O intense step of forming and reducing the subspace repre-
sentations of Ĥ, ∆̂, and the overlap matrix employs the efficient
linear COLUMBUS scheme described in ref 54. The entire
density matrix is kept in memory to eliminate I/O overhead
during the accumulation of the partial density matrix contributions.

In parallel mode, the subspace basis vectors are kept in
distributed memory, such that all subspace manipulations operate
on local data only. Integrals and density matrix elements are
kept in memory throughout. The formation of the matrix-vector
product and density matrices invariably involves interprocess
communication to access nonlocal trial and σ vector segments

and integrals. The preference for distributed and local memory
merely reflects the I/O bottleneck on most (massive) parallel
systems.

Partitioning the Ns CSFs of type s into ns segments divides
the total work of Tss′

I into nsns′ tasks, each reading and writing
one segment as well as running a single pass through all integrals
of class I. The total data transfer volume Vss′

I (in Bytes) depends
at most quadratically on the number of segments for the integral
contribution and linearly on the σ and trial vector component

To feed ncpu CPUs, ideally, it is sufficient to generate O
(ncpu) tasks [i.e., ns ) ns′ ) O(ncpu)1/2], so that the total
communication volume scales O(ncpu

R ) with 1/2 e R e 1 and
the average communication volume per CPU drops with
increasing processor usage. The zero-, one-, and two-external
integrals, which amount to only a small fraction of the total
number of integrals, are, in practice, kept replicated on each
CPU, so that the three-external integrals contribute formally
quadratic to the communication volume. To this end, it is
assumed that the workload is uniformly distributed among the
tasks. Owing to the structure and sparsity of the CI matrix, this,
however, is not the case. The total execution time ts̃s̃′

I for a task
Ts̃s̃′

I decomposes into

(i) the data transfer time td, given by Vs̃s̃′
I divided by some

effective network bandwidth γ, (ii) the evaluation time td of

SCHEME 1: Schematic Picture of the Segmented Matrix Vector Multiplea

a Lines denote segment type boundaries (Z: all-internal; Y: one-external; X: triplet coupled two-external; and W: singlet coupled two-external
CSFs), while symbols represent nonvanishing task types and integral classes, b: TZZ

0 ,TYY
0 ,TXX

0 ,TWW
0 {(ij|kl),hij}; f: TY

4 ,TX
4 ,TW

4 {(ab|cd),hab}; ×:
TYZ

1 ,TYW
1 ,TYX

1 {(ij|ka)}; O: TYY
2 ,TXZ

2 ,TWZ
2 ,TWW

2 ,TXX
2 ,TWX

2 {(ij|ab),(ia|jb)}; ]: TYW
3 ,TYX

3 {(ia|bc),hia}; i,j,k,l and a,b,c,d denote internal and external orbital
indices, respectively.

Vss′
I ) 8(ns′Ns + nsNs′) + nsns′(nint)

4-I(next)
I I < 4

(17)

Vs
4 ) 16Ns + ns(next)

4 (18)

ts̃s̃ ′
I ) tc + tσ + td ≈ Rnc + �nu + V s̃s̃

I /γ
(I ) 0, 1, 2, 3) (19)

ts̃
4 ) tσ + td ≈ �′nCSF + V s̃s̃

4 /γ (20)
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the internal contribution to the coupling coefficient, on average,
proportional to their number of nonvanashing GUGA loops nc,
and (iii) the formation of the matrix vector product tσ. The
formation of the σ vector makes extensive use of linear algebra,
and tσ is, on average, proportional to the number of valid upper
walks nu, while the prefactor � depends on task type, point group
symmetry, next, and processor characteristics (e.g., cache, clock
frequency). The tσ can vary by many orders of magnitude even
among tasks of the same type! Both nu and nc depend solely on
the reference space definition, the number and ordering of
internal orbitals, and the number of correlated electrons. Both
quantities are entirely independent of the basis set size. The Ts

4

tasks are special insofar as the computational cost is uniformly
spread among all tasks and proportional to the length of the CI
segment.

Figures 1 and 2 (referred to as a cost matrix) display nu for
a MR-AQCC calculation for the selected task types TZZ

0 , TYX
1 ,

TWW
2 , and TYX

3 at a resolution of 150 × 150 segments ()22500
blocks). Since nu and thus the cost matrix are independent of
the basis set size, it is sensible to characterize each segment by
the range of internal walks associated. The number of encoded
CSFs for each segment is approximately obtained by scaling
the number of internal walks with a factor of 1 (Z), next/nirrep

(Y), and next
2 /(2nirrep) (X,W), where next/nirrep denotes the average

number of external orbitals per irreducible representation (irrep).
The cost matrix for a CAS(12,12) with all inactive electrons

frozen (Figure 1) is widely different from its counterpart for
the direct product space chosen for Cr2 with the 3p electrons
correlated (Figure 2). The computational cost per segment block
for any given task type can vary by up to 6 orders of magnitude.
The discernible pattern of the cost matrix reflects the underlying
permutational symmetry of the CSF space as exploited by the
unitary group approach. The fraction of nonvanishing tasks
decreases in the order Ts,s′

0 , Ts,s′
1 , Ts,s′

2 , Ts,s′
3 from 65 to 7% (Figure

1) and 90 to 6% (Figure 2). The widely different cost matrices
illustrate the difficulty to ensure load balancing without exces-
sive data transfer load. In fact, it is tedious to guess or to
iteratively improve the load balancing even for a modest number
of CPUs (say 64) without a priori knowledge of the structural
information provided by the cost matrix. Even with dynamic
load balancing (implemented through a shared counter and a
time-ordered task list), the specification of the number of
segments and segment bounderies to prevent monopolizing a
calculation by a few tasks while keeping communication
overhead within bounds requires this information.

While for a small number of CPUs on a shared-memory
machine (i.e., fast communication), it is straightforward to
achieve load balancing, for the general case, it is no longer
practical to set up the segmentation manually. Instead, an
iterative numerical procedure has been devised to generate a
list of nonvanishing tasks from the cost matrix and scaling
factors constrained to minimum data transfer volume, optimum

Figure 2. Cost matrix for a direct product space used for Cr2 with 3p electrons correlated. The logarithmic gray scale of the patches encodes the
relative work load required to compute the respective subblock of the CI matrix. The resolution is 150 × 150 blocks per task type Tss′

I corresponding
to 1825 Z, 2266 Y 1883 X, and 1132 W type encoded internal walks per block. For the EXTD basis with ∼35 orbitals per irrep, each segment
encodes 1825 Z, 365 × 103 Y, 5500 × 103 X, or 5500 × 103 W configurations.
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load balancing, maximum memory usage, and number of CPUs.
For a wide range of configuration spaces and molecules, it has
been found that excellent load balancing and scalability can be
achieved. Such a scheme relies on reasonably reproducible task
timings, an assumption that does not hold in the case of network
saturation or the inability of the network to cope with a large
amount of random data traffic inevitably arising with dynamic
load balancing.

Figure 3 displays various performance characteristics of the
COLUMBUS MR-CI code as a function of the number of CPUs.
Whereas the specific numbers are problem- and machine-
specific, a general pattern and conclusions are universally valid.
The total transfer volume (Figure 3a) shows a minimum
reflecting a good balance between memory consumption and
load balancing, termed optimum work point (nwp). For ncpu ,
nwp, the task size is limited by local memory shortage, and the
transfer volume increases exponentially with decreasing ncpu.
In contrast, for ncpu . nwp, load balancing issues reduce the
maximum task size, and the transfer volume grows monotoni-
cally. For a sufficiently large number of tasks, the task size
distribution becomes inherently unfavorable as very many tiny
tasks are generated, and the communication overhead can exceed
the work load here. Defining “supertasks” composed of several
independent small tasks sharing a common segment implements
a simple semistatic load balancing which drastically reduces
the transfer volume while retaining the good load balance. A
number of four times ncpu tasks are sufficient to ensure excellent
performance (Figure 3c). A more critical quantity is the average
data transfer rate per CPU, that is, the total data volume divided
by the total amount of consumed CPU time per CI iteration.
Here, we find typical values between 5 and 10 MB/s for
semistatic and about twice this rate for dynamic load balancing.
This transfer rate grows only at O(ncpu)1/3. Finally, we note that

the communication overhead is acceptable, with almost uni-
formly 5-10% throughout (Figure 3d), so that the overall
scaling is almost ideal.

The actual CPU time consumption and the achievable fraction
of the peak performance largely depend on the use of linear
algebra routines. Since it is primarily efficient cache usage that
determines performance, the key feature is a large number of
floating point operations per data item. BLAS levels 0 (scalar)
and 1 (vector) have a ratio of 1/2, level 2 (matrix times vector)
has a ratio of 1, and level 3 (matrix times matrix) has a ratio of
n, where n denotes the matrix dimension. Hence, level 3 and,
to some extent, level 2 operations with large n yield a significant
performance boost. The evaluation of the σ vector involves a
huge number of level 2 and 3 operations, where the matrix
dimension is given by the number of external orbitals per irrep.
A task type resolved breakdown of CPU time consumption,
coupling coefficient overhead, BLAS level, and MFLOP rate
is collected in Table 1. Despite the size of the eigenvalue
problem of more then 1.7 billion CSFs, the individual matrix
dimensions and vector lengths, respectively, amount on average
to only 35 (i.e., 280 external orbitals divided by 8 irreps).
Increasing the basis set size or reducing symmetry will therefore
boost the efficiency. A MR-CIS calculation with the same
reference configuration space solely evaluates contributions from
task types TZZ′

0 , TYY′
0 , TYZ′

1 , TYY′
2 , and TY

4 at only 9% of the
computational cost of the MR-CISD counterpart, while com-
putational efficiency is fairly low due to at most matrix-vector
operations and a high overhead from (scalar) coupling coefficient
evaluation.

4. Results and Discussion

4.1. Computational Details. The active space consists of
12 orbitals derived from the 3d and 4s atomic orbitals. The

Figure 3. Performance behavior of the MR-AQCC code; (a) total data transfer volume, (b) average transfer rate per CPU, (c) average number of
tasks per CPU, and (d) estimated communication time (solid line with symbols) and total wall clock time per CI iteration (solid line). Open and
filled triangles denote dynamic and semistatic load balancing, respectively. Dashed lines indicate partial contributions of all tasks processing two
external (squares) and three external integrals (circles).
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MCSCF and identically the MR-AQCC reference configuration
space were chosen as the direct product space of six bonding/
antibonding orbital pairs occupied by two electrons each

with all possible spin-couplings allowed. After reduction of the
symmetry to the highest Abelian subgroup D2h, a compact
reference configuration space (1516 CSFs) results, as compared
to the minimum CAS(12,12) with 28784 CSFs, which is still a
factor of 2 smaller than the second widely used choice with
3088 CSFs.

Although both 3dσg
,4sσg

and 3dσu
,4sσu

belong pairwise to the same
irrep in D2h, the implicit constraint through the particular choice
of the configuration space ensures the proper resolution of the
active orbitals into bonding/antibonding orbital pairs. This is a
crucial point for a compact wave function expansion. It is the
minimum reference configuration space allowing for the correct
dissociation into the pair of antiferromagnetically coupled 7S
Cr atoms.

The DKH Hamiltonian is used throughout to treat electron
correlation and scalar relativistic effects on the same footing.

The extended relativistic ANO-RCC basis sets55 are
optimized for use with the DKH Hamiltonian and are
sufficiently flexible to account for semicore (3s,3p) electron
correlation. The TZP ([6s4p3d2f1g]), QZP ([7s5p4d3f2g1h]),
and EXTD ([10s10p8d6f4g]) contractions of the primitive basis
composed of (21s15p10d6f4g2h) have been used to compute
between 14 and 20 points of the potential energy function. Only
the spherical components of d and higher angular momentum
basis functions are retained. If not otherwise stated, the
chromium core (1s22s22p63s2) was kept frozen. Additional
calculations close to re explore the effect of 3s electron
correlation and basis set incompleteness.

The basis set superposition error (BSSE) was corrected for
by the full counterpoise correction.56 The energy of the
dissociated molecule was computed in the supermolecule
approach to account for size-extensivity errors.

The MR-AQCC calculations were fully uncontracted, and for
the majority of the calculations, the dimension of the eigenvalue
problem ranged from 163 to 1712 million CSFs, with turn-
around times of about 5-10 min per CI iteration using between
32 and 512 processors of a 32-way IBM SP4 SMP cluster. The
biggest calculation encountered here consisted of 2823 million
CSFs with 386 basis functions. Generalized interacting space
restrictions were applied.

The complete basis set (CBS) limit was estimated by two
extrapolation schemes for the dynamical electron correlation
energy (defined as the difference between MCSCF and MR-
AQCC energies). Scheme (i) is a two-point extrapolation
formula57 widely used for the correlation-consistent (cc) basis
sets by Dunning58 applied to the TZP/QZP pair of basis sets,
and scheme (ii) is the alternative scheme of approaching the
CBS limit by adding successively higher angular momentum
functions.24 The contractions used are approximately radially
saturateduptofandgfunctions([10s10p8d6f]and[10s10p8d6f4g],
respectively), and the extrapolation assumes a l-3 dependence
of the dynamical electron correlation energy with respect to the
maximum angular momentum l of the basis functions.

Spectroscopic constants were evaluated by solving the nuclear
Schrödinger equation numerically using the VIBROT program
from the MOLCAS59 package as far as a sufficiently large
portion of the potential energy function was available, and
otherwise, they were solved by a least-squares fit to the harmonic
approximation in the vicinity of the equilibrium bond length
was used.

The MCSCF, MR-CISD, and MR-AQCC calculations were
computed with the COLUMBUS42 suite of quantum chemistry
codes, while the integrals were obtained with the MOLCAS
quantum chemistry package. Recently, we interfaced both codes
(COLUMBUS-MOLCAS link) at the level of integrals, molec-
ular orbital coefficients (energies, properties), and effective
density and fock matrices (gradients), so that both single-point
calculations and structure optimizations could be carried out
with the combination of these codes.

4.2. The X1Σg
+ State of Cr2. The multireference character

of the X1Σg
+ state even close to the equilibrium bond length

excludes the use of any single-reference methods. Owing to the
more diffuse character of the 4s as compared to the 3d orbitals
at internuclear distances of about 1.7 Å, 3d-3d bonding
dominates, while toward longer bond distances, the 3d-3d bond
is progressively broken, and weak 4s-4s bonding pertains at
2.5 Å. To describe bond polarization at short distances, at least
f, or better g, functions are required. Due to the spatial proximity
of 3d, 3p, and 3s orbitals, semicore valence polarization and
electron correlation are important. The MCSCF calculations used
here cannot even qualitatively account for the shape of the
potential energy function but merely serve the purpose to provide
qualitatively correct molecular orbitals that are resolved into
pairwise bonding and antibonding orbitals. Hence, large dif-
ferential dynamic electron correlation effects must be accounted
for. At long bond distances, the ground state is approximately
characterized by weak 4s-4s bonding and an antiferromagneti-
cally coupled pair of 3d5(6S) cores. The basis set requirements
in terms of angular momentum are much reduced, although
semicore electron correlation remains significant.

The upper panel of Figure 1 displays the MR-AQCC potential
computed with TZP, QZP, and EXTD basis sets along with its

TABLE 1: Breakdown of the Total CPU Time Consumption
for a Single Davidson Iteration for Cr2

a

task classes
Tss′

I

[CPUs] tb %b MFLOPsc
BLAS
leveld

nc

[106]

TZZ′
0 540 47 >35 0 173

TYY′
0 2118 35 155 1 822

TWW′
0 , TXX

0x 7020 3 375 1e 154
TYZ

1 2397 41 133 1 576
TYX

1 , TYW
1x 34675 4 306 2 1357

TYY′
2 11724 2 853 2 297

TXZ
2 , TWZ

2x 1077 2 560 1 8
TXX′

2 , TWX
2 , TWW′

2 52801 <1 2340 3 102
TYX

3 , TYW
3 48034 <1 770 2 5

TY
4 , TX

4 , TW
4 20855 0 810 2 -

sum 181241 2 3494

a Conditions: 1.713 × 109 CSFs, EXTD basis, 280 ext. orbitals,
IBM Power4 p575, 1.6 GHz, 6.4 GFLOPs, average vector length
and matrix dimension, respectively; n ) 35. b Percentage of Tss′

I due
to coupling coefficient evaluation. c Summed over all tasks of the
given task type. d Terms: 0 ) scalar, 1 ) vector, 2 ) matrix-vector,
and 3 ) matrix-matrix operations. e Vector length n2.

(3dδg
3dδu

)2(3dδg′, 3dδu′)
2(3dπu

3dπg
)2(3dπu′3dπg′)

2 ×

(3dσg
, 3dσu

)2(4sσg
, 4sσu

)2 (21)

(3dδg
3dδu

)2(3dδg′, 3dδu′)
2(3dπu

3dπg
)2(3dπu′3dπg′)

2 ×

(3dσg
, 3dσu

, 4sσg
, 4sσu

)4 (22)
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experimental counterpart correlating the 3p, 3d, and 4s electrons.
Also, the CBS limit based on the two-point extrapolation
formula derived from the TZP and QZP results is displayed.
All energies are given relative to the total energy of the separated
atoms in their ground state. The top inset documents the
internuclear distance dependence of the BSSE; while extended
basis sets reasonably are saturated up to g functions (EXTD),
even more, those augmented by additional h functions display
a negligible BSSE of less than 0.05 eV at re (cf. also refs 31
and 24). Frequently used “large” QZP-like basis sets for electron
correlation methods applied to first-row transition-metal com-
pounds introduce a sizable BSSE that may not be as favorable
as that in the case of 7S Cr and might not be ignored from the
outset.

With the TZP basis set, two distinct shallow minima at R )
1.7 and 2.5 Å with almost the same energy (-0.078 eV)
separated by a low barrier (barrier height 0.05 eV) are resolved.
At the QZP level, the 3d-3d minimum deepens by ∼0.4 eV,
while the 4s-4s bonding region is less affected. The initial
barrier separating the two distinct bonding situations disappears
as the 3d-3d minimum widens, owing to more flexibility to
incorporate semicore valence electron correlation. The impor-
tance of single and double excitations out of the 3p semicore
orbitals into the 3d/4s valence orbitals rapidly decreases with
increasing bond distance. Beyond 2.25 Å, there are no
core-valence excitations with a weight (ci

2) of more than 10-4

contained in the wave function.
The EXTD basis yields a rather uniform reduction of the

energy by 0.05 eV. After extrapolation to the CBS limit, the
potential energy function closely resembles the shape of
the experimental data, albeit shifted by about 0.15 eV to higher
energies. The energy difference between EXTD and CBS results
agrees with the corresponding energy difference for the CBS
extrapolations of CIPT2 dissociation energies cross-checked
against basis sets saturated up to i functions.24 Thus, CBS limit
extrapolations from TZP/QZP type contractions of ANO-RCC
basis sets appear to be useful and cost-effective. However, since

the TZP contraction is slightly deficient in the recoupling region
between 3d-3d and 4s-4s bonding, this also slightly affects
the extrapolated data in this region.

The bottom inset of Figure 4 depicts the EBO (i.e., half of
the occupation number difference between bonding and anti-
bonding natural orbitals derived from the MR-AQCC one-
electron density). The total EBO drops from 4.25 at 1.72 Å to
1.44 at 2.65 Å, corresponding to breaking three bonds out of
four at re. The δ and π bonds contribute most to bonding at re.
While all 3d contributions vanish rapidly beyond 2.1 Å, 4sσ

though weak extends to large internuclear distances. From the
data presented so far, it can be concluded (i) that MR-AQCC is
capable of treating the X1Σg

+ state quantitatively, provided h
and i functions are incorporated, and (ii) that the shape of the
experimental potential energy function is in agreement with the
calculations, with the exception of the strong bend at about 2.9
Å. The reliability of the RKR potential in this region has already
been questioned before.23

In Figure 5, current CBS extrapolated data are compared to
a selection of recent work using MR-ACPF and various MRPT
implementations with extended basis sets. The potential derived
from CASPT2 (CAS(12,16), ANO-RCC [9s8p7d5f3g], level
shift ) 8.16 eV.) by Roos23 is omitted from the plot as the
resolution of the figures was insufficient. However, according
to the data provided in ref 23, the shapes of the CASPT2 and
the RKR potentials likely agree almost quantitatively, while D0

) 1.647 eV somewhat exceeds the experimental value (cf. Table
2). In a CASPT2 calculation with a basis set close to the CBS
limit (CAS(12,12), level shift ) 16.33 eV),24 De is overestimated
by 0.35 eV. The authors pointed out that De depends almost
linearly on the level shift beyond 10.9 eV, so that with the level
shift used in ref 23, their dissociation energy should increase
to in excess of 2 eV. CIPT2+Q2, which treats solely the
excitations from the core electrons perturbatively and adds a
Davidson-type size-extensivity correction for the variationally
treated valence electrons, is less affected by intruder states as
CASPT2, though not exactly size-extensive (SCE error: 0.042

Figure 4. Computed potential energy function for Cr2 (this work) and comparison with a potential derived from a RKR fit to experimental data.
All energies are given relative to the total energy of the separated atoms in their ground state (RKR: De ) 1.472 eV). Top inset: Basis set superposition
error (BSSE) for TZP, QZP, and EXTD basis sets. Bottom inset: effective bond order (EBO) analysis for 3dσ, 3dπ, 3dδ, and 4sσ derived from the
eigenvalues of the MR-AQCC one-electron density (QZP basis).
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eV).24 It shows the opposite behavior and underestimates De

by 0.25 eV. Additionally, these authors point out that both
CASPT2 and, to a lesser extent, CIPT2+Q2 fail to describe core
and valence electron correlation properly balanced,24 that is, the
inclusion of 3p electron correlation leads to an increase of re.

MR-CI+Q and equally MR-AQCC, however, produce the
expected result that 3p electron correlation reduces re. For
MR-AQCC (QZP contraction), a linear relation between r
and the 3p core correlation energy (in atomic units) in the
vicinity of the experimental equilibirium bond length was
found (-0.587 + 0.016(r - 3.0)). The 3s electron correlation
is, not unexpectedly, rather indifferent to the chemical bond

(-0.1778 + 0.002(r - 3.0)). Since CASPT2 yields an
excellent equilibrium bond length and harmonic frequency,
error compensation between valence and core electron
correlation must play a role. NEVPT2 and NEVPT3 by
construction do not encounter intruder state problems. While
NEVPT2 also overestimates De by 0.25 eV, NEVPT3
produces a potential energy function with two pronounced
minima separated by a barrier of ∼0.3 eV, vaguely similar
to the MR-AQCC data computed with the TZP basis set. Note
that while CASPT2, CIPT2+Q2, MR-ACPF, and MR-AQCC
describe the 4s-4s bonding region in agreement with

Figure 5. Potential energy function for Cr2. All energies are given relative to the total energy of the separated atoms in their ground state (RKR:
De ) 1.472 eV). CBS (TZP/QZP) extrapolation of MR-AQCC data (this work), MR-ACPF (basis contains up to f functions; no scalar relativistic
effects considered),62 CIPT2 (basis includes up to i functions),24 CASPT2 (CAS(12,12); basis includes up to i functions),24 SC-NEVPT2 and SC-
NEVPT3 (ANO-RCC basis up to h functions),31 and experimental RKR potential.9

TABLE 2: Spectroscopic Constants for the X1Σg
+ State of Cr2 at the MR-AQCC Levela

method basis re [Å] De [eV] D0 [eV] ωe [cm-1] ∆G1/2 [cm-1]

This Work
MR-AQCC TZP 1.758 0.742 -g -g 204
MR-AQCCb TZP 1.741 0.820 - - -
MR-AQCC QZP 1.701 1.129 1.104 450 380
MR-AQCCb QZP 1.683 1.165 - - -
MR-AQCC EXTD 1.708 1.222 1.200 379 376
MR-AQCC CBS(TZP/QZP) 1.685 1.355 1.327 459 431
MR-AQCCb CBS(TZP/QZP) 1.675 1.400 - - -

Other Work
MR-ACPFc f 1.72 1.09 1.05 339 -
IC-MRCI+Q2

d fgh 1.666 1.10 1.07 512 -
CIPT2+Q2

d fgh 1.753 1.21 1.19 321
CIPT2+Q2

b,d fgh 1.756 1.20 1.18 322 -
CASPT2(g1)d fgh 1.674 1.88 1.85 571 -
CASPT2(g1)b,d fgh 1.678 1.87 1.84 565 -
CASPT2(g1)b,e ANO-RCC fg 1.662 - 1.647 - 413
SC-NEVPT2f ANO-RCC fgh 1.655 - 1.702 - 580
SC-NEVPT3f ANO-RCCfgh 1.671 - 0.966 - 491
experiment 1.679h 1.472 ( 0.056i 1.443 ( 0.056j 481m 452h

1.56 ( 0.06i 1.53 ( 0.06k

1.45 ( 0.1i 1.42 ( 0.1l

a The 3p,3d,4s electrons correlated. b Including 3s electron correlation. c Reference 62. d Reference 24. e Reference 23. f Reference 31.
g Harmonic approximation inappropriate for shallow double minimum. h Reference 1. i Vibrational zero-point energy of 0.029 eV assumed.
j Reference 2. k Reference 61. l Reference 60. m Reference 9.
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experimental data, both NEVPT2 and NEVPT3 curves are
too shallow.

There is some controversy in the literature about the presence
of a second (shallow) minimum in the 4s-4s bonding region.
While experimental data are insufficient to unequivocally assign
a second minimum, CIPT2 seems to predict at most a very
shallow minimum at about r ) 2.4 Å, while MR-AQCC with
large basis sets indicates an almost flat shelf extending over
0.25 Å at about r ) 2.4 Å. The double minimum observed for
the TZP basis is an artifact of an insufficiently flexible basis
set. CASPT2 calculations also do not indicate a double
minimum.

Considering the discussion about the shortcomings of the
perturbation-theory-based approaches, it seems likely that the
choice of the zeroth-order Hamiltonian is the primary source
of error. For CASPT2 additionally, the level shift procedure is
another likely source of error. While the discussed multirefer-
ence approaches have been shown to work very well for a wide
range of applications, one has to accept that especially for the
ground state of the chromium dimer, it is difficult to obtain a
good zeroth-order Hamiltonian as the size of the active space
is quite limited. Given the results, the CAS(12,16) reference
space appears to be a step toward the right direction. However,
the basis set used there is considerably smaller than many of
those discussed so far, and the correction to the CBS limit may
be sizable.

The spectroscopic constants are collected in Table 2. The
equilibrium bond length from MR-AQCC with the EXTD basis
is too long by 0.03 Å. Extrapolation to the CBS limit and 3s
electron correlation reduce re to about the experimental value.
Extrapolated De underestimates the experimental value still by
about 0.1 eV, while ωe is about right. The energies of the higher
vibrational states obtained by solving the nuclear Schrödinger
equation numerically with the TZP/QZP extrapolated potential
(not given here) are somewhat low.

In Table 3, the size-consistency error (SCE) for the X1Σg
+

state evaluated at an internuclear distance of 16 Å is collected
for MR-CISD, MR-CISD with several variants of the Davidson
correction, MR-ACPF, and MR-AQCC correlating different
numbers of electrons. The SCE of straightforward MR-CISD
is unacceptable for 18 and more correlated electrons. The Q3

variant of the Davidson correction works throughout best and
reduces the SCE by 87% as compared to MR-CISD. MR-AQCC
reduces the SCE by 99%, and MR-ACPF is practically free of
SCE. We have already briefly discussed that intruder states can
occur in the MR-AQCC method. In the case of the ground state
of Cr2, there is no indication for the presence of an intruder
state; the weight of the reference wave function (c0

2) within the
bonding regime varies between 0.82 and 0.84, no single
nonreference CSF gains a remarkable weight, and the second
excited singlet state of Σg

+ symmetry is well-separated by more
than 2.5 eV and dissociates to a pair of 5S chromium atoms.

Finally, basis set effects on the dissociation energy evaluated
at 1.7075 Å using various contractions of the ANO-RCC basis

set are shown in Table 4. The 3s electrons have been kept frozen
here. A cc-like contraction sequence of the ANO-RCC basis
set ([6s4p3d2f1g] X ) 3, [7s5p4d3f2g1h] X ) 4, CBS limit
thereof) seems to be somewhat low. Comparison with scheme
(ii) using the contractions [10s10p8d6f] and [10s10p8d6f4g]
yields a CBS limit of 1.45 eV. Inspecting the effect of an h
functions in comparison with the effect of a single set of i
functions suggests that the h function exponents are not
optimum. Hence, the CBS(TZP/QZP) extrapolation underesti-
mates the actual CBS limit by 0.09-0.12 eV. Adding the 3s
electron correlation contribution of 0.06 eV, a final De of
1.48-1.50 eV would be expected. Given the comparatively
small basis set of the CASPT2 calculation with the enlarged
active space,23 the corresponding CBS limit for De may be
expected at about 1.88 eV.

5. Summary and Conclusions

The potential energy function of the Cr2 X1Σg
+ has been

investigated with the multireference-averaged quadratic coupled
cluster (MR-AQCC) method. Large fully uncontracted MR-
AQCC calculations with large basis sets resulted in huge wave
function expansions of up to 2.8 billion CSFs, requiring an
efficient parallel implementation of the code. Relevant imple-
mentation details have been described, and the general perfor-
mance characteristics of the implementation have been discussed.

It has been demonstrated that MR-AQCC is a method
applicable to the accurate calculation of the X1Σg

+ of the
chromium dimer. Basis set studies including 3p electron
correlation have been used to extrapolate the entire potential
energy function to the estimated complete basis set limit. The
quality of the extrapolation scheme has been assessed by
additional calculations with even larger basis sets up to including
i functions. While the computed re ) 1.675 Å and ωe ) 459
cm-1 agree well with the experimental data (re ) 1.679 Å, ωe

) 481 cm-1), the energy of higher vibrational states differs
somewhat, and De is underestimated by ∼0.13 eV. Further, MR-
AQCC calculations with large basis set and consideration of 3s
correlation effects in the vicinity of the equilibrium bond length
indicate that 0.1 eV is due to deficiencies of the TZP/QZP-
based CBS extrapolation and that 0.06 eV arises from 3s electron
correlation.

On the basis of the MR-AQCC results and comparison with
recent data from the literature, we arrive at the conclusion that
multireference perturbation theory has substantial difficulties in
treating the chromium dimer ground state, owing to an
inadequate zeroth-order approximation and due to intruder state

TABLE 3: Size-Consistency Error of Cr2 in eV Evaluated
at an Interatomic Separation of 16 Å (EXTD basis set)

correlated electrons

method 3d4s 3p3d4s 3s3p3d4s

MR-CISD 0.185 1.047 1.369
MR-CISD+Q1 0.054 0.401 0.542
MR-CISD+Q2 0.040 0.287 0.385
MR-CISD+Q3 0.024 0.141 0.179
MR-ACPF 0.000 0.000 0.000
MR-AQCC 0.008 0.013 0.012

TABLE 4: Basis Set Effects on De Evaluated at the
MR-AQCC Level of Theory with 3s Semicore Electrons
Frozen at 1.7075 Å Using the ANO-RCC Basis Seta

contraction De [eV]
E(MR-AQCC)+

2100b [Eh]
#CSF
[106]

[6s4p3d2f1g] 0.76 -0.06166 163
[7s5p4d3f2g] 1.09 -0.12602 406
[7s5p4d3f2g1h] 1.12 -0.14626 547
[7s5p4d3f2g1h]c 1.18 -0.32739 741
[10s10p8d6f] 0.92 -0.08530 1043
[10s10p8d6f4g] 1.21 -0.16213 1713
[10s10p8d6f4g2h] 1.30 -0.18589 2290
[10s10p8d6f4g2h1i] 1.42 -0.19124 2826
CBS([6s4p3d2f1g]/[7s5p4d3f2g1h])d 1.33
CBS([10s10p8d6f]/[10s10p8d6f4g])e 1.45

a Basis set exponents for the h and i functions are 2.543, 0.943
(h), and 1.10 (i). b Total energy in atomic units excluding BSSE
corrections. c The 3s electrons correlated. d Scheme (i). e Scheme
(ii).
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problems (where applicable). While at second-order perturbation
theory these deficiencies have only moderate impact so that the
overall agreement with experimental data is quite good, the
notion that the agreement primarily arises from error compensa-
tion effects is worrysome. Third-order perturbation theory
produced poor results, and in light of the presented data, they
are likely artifacts from the choice of the zeroth-order Hamil-
tonian. CASPT2 data with an extended CAS(12,16), which are
in good agreement with experimental data, are an indication of
stricter requirements on the choice of Ĥ0 while MR-AQCC does
not share this sensitivity toward the reference space.
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